Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 1027500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311709

RESUMO

Alveolar echinococcosis (AE) is a parasitic disease caused by E. multilocularis metacestodes and it is highly prevalent in the northern hemisphere. We have previously found that vaccination with E. multilocularis Leucine aminopeptidase (EM-LAP) induced specific immune response and had an inhibiting effect on the parasites. In this study, the therapeutic effect of recombinant EM-LAP (rEM-LAP) on AE was evaluated and verified using Ubenimex, a broad-spectrum inhibitor of LAP. The results reveal that rEM-LAP could inhibit cyst growth and invasion and induce specific immunity response in BALB/c mice infected with E. multilocularis protoscoleces. The ultrasonic, MRI, and morphological results show that treatment with rEM-LAP inhibits E. multilocularis infection and reduces cyst weight, number, fibrosis and invasion. The same effect is observed for the treatment with Ubenimex by inhibiting LAP activity. The indirect ELISA shows that rEM-LAP could induce specific immunity response and produce high levels of IgG, IgG1, IgG2a, IgM, and IgA, and the serum levels of IFN-γ and IL-4 are significantly increased compared to the control groups, indicating that treatment with rEM-LAP leads to a Th1 and Th2 mixed-type immune response. This study suggests that EM-LAP could be a potential therapeutic target of E. multilocularis infection.


Assuntos
Cistos , Equinococose , Echinococcus multilocularis , Camundongos , Animais , Leucil Aminopeptidase , Equinococose/tratamento farmacológico , Camundongos Endogâmicos BALB C , Imunoglobulina G
2.
Front Immunol ; 13: 918160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911756

RESUMO

There are many virulence factors of H. pylori that contribute in diverse ways to gastric disease. Therefore, designing multivalent epitope vaccines against many key virulence factors virulence factors of H. pylori is a promising strategy to control H. pylori infection. In previous studies, we constructed a multivalent epitope vaccine FVpE against four key virulence factors of H. pylori (Urease, CagA, VacA, and NAP), and oral immunization with the FVpE vaccine plus a polysaccharide adjuvant (PA) containing lycium barbarum polysaccharide and chitosan could provide protection against H. pylori infection in the Mongolian gerbil model. Oral vaccines have many advantages over injected vaccines, such as improved safety and compliance, and easier manufacturing and administration. However, the harsh gastrointestinal (GI) environment, such as gastric acid and proteolytic enzymes, limits the development of oral vaccines to some extent. Oral vaccines need a gastrointestinal delivery system with high safety, low price and promoting vaccine antigen to stimulate immune response in the gastrointestinal mucosa. Lactic acid bacteria are gastrointestinal probiotics that have unique advantages as a delivery system for oral vaccines. In this study, a M cell-targeting surface display system for L. lactis named plSAM was designed to help vaccine antigens to stimulate effective immune responses in the gastrointestinal tract, and a M cell-targeting recombinant L. lactis vaccine LL-plSAM-FVpE was constructed by using the surface display system plSAM. recombinant L. lactis vaccine LL-plSAM-FVpE could secretively express the SAM-FVpE protein and display it on the bacterial surface. Moreover, experimental results confirmed that LL-plSAM-FVpE had an enhanced M cell-targeting property. In addition, LL-plSAM-FVpE had excellent M cell-targeting property to promote the phagocytosis and transport of the antigen SAM-FVpE by gastrointestinal M cells. More importantly, oral immunization of LL-plSAM-FVpE or SAM-FVpE plus PA can stimulate IgG and sIgA antibodies and CD4+ T cell immune responses against four virulence factors of H. pylori (Urease, CagA, VacA, and NAP), thus providing protective immunity against H. pylori infection in mice. The M cell-targeting recombinant L. lactis vaccine against various key H. pylori virulence factors could be a promising vaccine candidate for controlling H. pylori infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos , Antígenos , Vacinas Bacterianas , Epitopos , Infecções por Helicobacter/prevenção & controle , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Urease , Vacinas Sintéticas , Fatores de Virulência
3.
Acta Trop ; 232: 106518, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35605672

RESUMO

INTRODUCTION: The main objective of this study was to develop a One-tube nested MGB probe real-time PCR Assay for detecting Echinococcus multilocularis infection in human plasma cell free DNA (cfDNA). METHODS: cfDNA was extracted from 10 E.m.-infected patients using a NucleoSnap DNA Plasma Kit and characterized by genomic sequencing. We designed nested PCR primers and MGB probe for Echinococcus multilocularis detection. The specificity, sensitivity and reproducibility of this assay were analyzed, and its validity was confirmed in 13 early stage clinical samples. RESULTS: Several Echinococcus multilocularis-specific sequences were detected in the cfDNA of E.m.-infected patients, and CBLO020001206.1 was selected as the candidate sequence. We designed the primers and probe for the one tube nested real-time PCR. No cross-reactions with E.g. were observed. The detection limit was as low as 1 copy for Echinococcus multilocularis. The coefficients of variation were lower than 5% in intra- and inter-assays. 11 out of 13 patients were positive with nested MGB Probe PCR Assay and 3 patients were positive without outer primer in early stage Alveolar Echinococcosis pateints. CONCLUSION: The one-tube nested MGB probe real-time PCR assay is a simple, rapid, and cost-effective method for detection of Echinococcus multilocularis infection in patients' Plasma DNA.


Assuntos
Ácidos Nucleicos Livres , Echinococcus multilocularis , Animais , Equinococose , Echinococcus multilocularis/genética , Fezes , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Technol Health Care ; 30(4): 799-814, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35068426

RESUMO

BACKGROUND: Alveolar echinococcosis is an epidemic disease caused by the parasitism of Echinococcus multilocularis (Em) larvae in the intermediate or final host. OBJECTIVE: To identify and analyze B-cell and T-cell (Th1, Th2, and Th17) epitopes of the Em antigen protein thrombospondin 3 (TSP3). METHODS: The amino acid sequence of TSP3 was obtained, and the secondary structural characteristics of TSP3 were predicted using bioinformatics software to further predict its potential T-cell and B-cell epitopes. The spleen lymphocytes of BALB/c mice, which were immunized with the TSP3 protein, were collected for co-culture with B-cell and T-cell antigen small peptides. The B-cell epitopes and T-cell epitope subtypes Th1, Th2, and Th17 were identified as having good immunogenicity. RESULTS: After identification, it was found that the predominant epitopes of B cells existing in TSP3 were T18-33, T45-55, and T110-122. Furthermore, the predominant epitopes of T cells existing in TSP3 were T33-42, T45-55, T80-90, and T110-122 in the T1 subtype, T45-55, T68-77, and T92-104 in the Th2 subtype, and T53-63 and T80-90 in the Th17 subtype. CONCLUSIONS: Six T-cell and eight B-cell dominant epitopes of the TSP3 antigen were revealed; these results may be applied in the development of a dominant epitope vaccine.


Assuntos
Equinococose , Echinococcus multilocularis , Animais , Equinococose/prevenção & controle , Epitopos de Linfócito B , Camundongos , Trombospondinas
5.
Front Immunol ; 13: 1091004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733393

RESUMO

Introduction: The objective of this study is to construct a multi-epitope vaccine GILE containing B-cell and T-cell epitopes against Echinococcus Multilocularis (E. multilocularis) infection based on the dominant epitopes of E. multilocularis EMY162, LAP, and GLUT1. Methods: The structure and hydrophobicity of GILE were predicted by SWISSMODEL, pyMOL, SOPMA and VMD, and its sequence was optimized by Optimum™ Codon. The GILE gene was inserted into pCzn1 and transformed into Escherichia coli Arctic express competent cells. IPTG was added to induce the expression of recombinant proteins. High-purity GILE recombinant protein was obtained by Ni-NTA Resin. BALB/c mice were immunized with GILE mixed with Freund's adjuvant, and the antibody levels and dynamic changes in the serum were detected by ELISA. Lymphocyte proliferation was detected by MTS. The levels of IFN-g and IL-4 were detected by ELISpot and flow cytometry (FCM). T cells were detected by FCM. The growth of hepatic cysts was evaluated by Ultrasound and their weights were measured to evaluate the immune protective effect of GILE. Results: The SWISS-MODEL analysis showed that the optimal model was EMY162 95-104-LAP464-479-LAP495-510-LAP396-410-LAP504-518-EMY162112-126. The SOPMA results showed that there were Alpha helix (14.88%), Extended strand (26.25%), Beta turn (3.73%) and Random coil (45.82%) in the secondary structure of GILE. The restriction enzyme digestion and sequencing results suggested that the plasmid pCzn1-GILE was successfully constructed. The SDSPAGE results indicated that the recombinant protein was 44.68 KD. The ELISA results indicated that mice immunized with GILE showed higher levels of serum antibodies compared to the PBS group. The FCM and ELISpot results indicated that mice immunized with GILE secreted more IFN-g and IL-4. Immunization with GILE also led to a significant decrease in the maximum diameter and weight of cysts and stimulated the production of CD4+ and CD8+ T Cell. Discussion: A multi-epitope vaccine GILE with good immunogenicity and antigenicity has been successfully constructed in this study, which may provide important theoretical and experimental bases for the prevention and treatment of E. multilocularis infection.


Assuntos
Interleucina-4 , Vacinas , Animais , Camundongos , Interleucina-4/genética , Proteínas Recombinantes , Interferon gama , Epitopos de Linfócito T/genética
6.
Acta Trop ; 222: 106066, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34303691

RESUMO

Alveolar echinococcosis, a parasitic zoonotic disease caused by the larval stage of Echinococcus multilocularis infection, is a global epidemic in Eurasia and North America. Leucine aminopeptidase (LAP) of the M17 peptidase family could act on an ideal target antigen in diagnosis and prevention of parasitic diseases (schistosomiasis, malaria, fascioliasis) because of its good immunogenicity. In this study, the bioinformatic and enzymatic characterizations of recombinant Echinococcus multilocularis LAP (rEm-LAP) were evaluated. A prokaryotic expression system for rEm-LAP protein was established and its immunogenicity and preventive efficacy were demonstrated in a BALB/c mice model. This is the first report about the LAP of Echinococcus multilocularis and with a 57.4 KD purified rEm-LAP protein successfully expressed by pCzn1-LAP in Escherichia coli BL-21 cells. Enzymatic analysis results showed optimal rEm-LAP activity at pH 9. Serum indirect ELISA demonstrated that rEm-LAP could induce a Th1 and Th2 mixed-type immunological response and produce high levels of IgG, IgG1, IgG2a, IgM, and IgA. Furthermore, serum IFN-γ and IL-4 secretion were increased compared with the control groups. Finally, vaccination with rEm-LAP significantly decreased both the number and size of the cysts in Echinococcus multilocularis metacestode infected mice model. The current study provides evidence that rEm-LAP could be a potential vaccine antigen of Echinococcus multilocularis.


Assuntos
Equinococose , Leucil Aminopeptidase/imunologia , Animais , Antígenos de Helmintos/imunologia , Equinococose/imunologia , Equinococose/prevenção & controle , Echinococcus multilocularis/enzimologia , Ensaio de Imunoadsorção Enzimática , Camundongos , Camundongos Endogâmicos BALB C , Vacinas/imunologia
7.
Acta Trop ; 220: 105955, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33979643

RESUMO

INTRODUCTION: Alveolar echinococcosis is a high-risk parasitic disease caused by the larval stage of Echinococcus multilocularis. The study aimed to predict and identify the dominant Th1/Th2 and B cell epitopes of the antigen protein 14-3-3 beta:alpha from Echinococcus multilocularis. METHODS: A comparison of the four amino acid sequences of 14-3-3 beta:alpha was respectively derived from Echinococcus multilocularis, Rattus norvegicus, Canis lupus familiaris, and Homo sapiens was carried out by CLUSTALW to provide a basis for excluding similar epitopes. The amino acid sequence information was analyzed by SOPMA and the homology model was established by Swiss-Model. IEDB and SYFPEITHI were used to predict T cell epitopes. According to the Bcepred and ABCpred, the B cell epitopes were comprehensively predicted and analyzed. The dominant epitopes were validated by Lymphocyte Proliferation, ELISA, ELISpot, and Flow cytometry. RESULTS: Eight potential epitopes of 14-3-3 from Echinococcus multilocularis were screened according to the results of prediction and analysis: 14-3-31-15, 14-3-36-21, 14-3-371-86, 14-3-3144-157, 14-3-3145-166, 14-3-3146-160, 14-3-3153-161, and 14-3-3164-177. The 3D structure model of the protein was constructed and the location distribution of potential epitope was ascertained. Respectively, the epitopes of the dominant antigen of B cells were validated as 14-3-3145-166 and 14-3-3164-177; the Th1 dominant antigen epitopes were 14-3-36-21, 14-3-3145-166; and the Th2 dominant epitopes was 14-3-3145-166. CONCLUSION: In this study, two dominant antigen epitopes of B cells, two Th1 dominant antigen epitopes, and one Th2 dominant antigen epitope were validated. Our work provides a basis for the subsequent development of efficient and safe vaccines targeting epitopes of Echinococcus multilocularis.


Assuntos
Proteínas 14-3-3/imunologia , Biologia Computacional , Echinococcus multilocularis/imunologia , Mapeamento de Epitopos , Proteínas 14-3-3/química , Sequência de Aminoácidos , Animais , Cães , Epitopos de Linfócito B/imunologia , Humanos , Ativação Linfocitária/imunologia , Ratos
8.
Acta Parasitol ; 65(4): 919-928, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32542510

RESUMO

INTRODUCTION: Alveolar echinococcosis (AE) is a zoonotic disease caused by the parasitism of Echinococcus multilocularis larvae in the intermediate host or the final host. This study aims to identify and analyze the B-cell and T-cell (Th1, Th2 and Th17) epitopes of E. multilocularis antigen Emy162. METHODS: (1) The secondary structural characteristics of the Emy162 protein were predicted by bioinformatics software to further predict the potential T- and B-cell epitopes. (2) The dominant antigen epitopes were detected by ELISA through the reaction of patient serum with small B-cell antigen peptide and assessing the proliferation of splenic lymphocytes of mice immunized with Emy162. (3) The expression of cytokines in splenic lymphocytes of mice stimulated by small T-cell antigen peptides was detected by ELISA, ELISpot and flow cytometry to enable the identification of the T-cell epitopes. RESULTS: (1) The high-scored T-cell epitopes were located at positions E7-13, E36-41, E80-89, E87-96, E97-106 and E129-139, while B-cell epitopes were located at positions E7-13, E19-27, E28-36, E37-48, E78-83, E101-109, E112-121 and E129-139. (2) The three advanced antigen epitopes of Emy162 were E19-27, E112-121 and E129-139. (3) The four Th1 advanced antigen epitopes of Emy162 were E7-13, E36-41, E80-89 and E129-139. The three Th2 advanced antigen epitopes were E36-41, E87-96 and E97-106. The three Th17 advanced antigen epitopes were E36-41, E87-96 and E97-106. CONCLUSION: (1) The Emy162 protein has advanced antigenicity and numerous potential epitopes. Six T-cell and eight B-cell dominant epitopes were revealed using bioinformatics methods. (2) There are three dominant B-cell epitopes, four dominant Th1 epitopes, three dominant Th2 epitopes, and three dominant Th17 epitopes in the Emy162 antigen.


Assuntos
Equinococose , Echinococcus multilocularis , Animais , Citocinas , Epitopos de Linfócito B , Humanos , Camundongos , Linfócitos T
9.
Food Funct ; 11(6): 5308-5319, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32458851

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative disease that is regarded as a growing global challenge. Accumulating evidence linking gut microbiota with AD has become intriguing. The purpose of this study was to investigate how Tibetan fermented milk affected memory impairment in amyloid precursor protein (APP)/presenilin-1 (PS1) mice, using APP/PS1 transgenic mice as examples. We used Tibetan fermented milk (the yogurt samples with the highest microbial diversity were selected by 16S sequencing) as an intervention in such mice for 20 weeks, with aseptic maintenance feed as their basic diet. At the end of the intervention, we collected fecal samples for 16S ribosomal ribonucleic acid (rRNA) sequencing. We evaluated the effects of Tibetan fermented milk on the mice's cognitive function by behavioral examination, and deposition of amyloid beta (Aß) in the hippocampus and cortex of the mice by immunohistochemistry (IHC). Results showed that Tibetan fermented milk could improve cognitive impairment in APP/PS1 mice, including spatial learning/memory and object recognition/memory. Sequencing of 16S ribosomal RNA in mouse feces showed that Tibetan fermented milk increased intestinal microbial diversity and elevated the relative abundance of Bacteroides and Faecalibacterium spp. Mucispirillum and Ruminiclostridium were highly abundant in APP/PS1 mice. Additionally, correlation analysis revealed that cognitive function was correlated negatively with Mucispirillum abundance and positively with Muribaculum and Erysipelatoclostridium abundance. Tibetan fermented milk could also reduce deposition of Aß in the cerebral cortex and hippocampus. Our data suggested that long-term intake of Tibetan fermented milk had a beneficial effect on the composition of intestinal flora, which was correlated with cognitive improvements in APP/PS1 mice and seemed to help prevent and treat AD-induced cognitive decline.


Assuntos
Doença de Alzheimer/dietoterapia , Disfunção Cognitiva/dietoterapia , Suplementos Nutricionais , Microbioma Gastrointestinal , Iogurte , Altitude , Doença de Alzheimer/microbiologia , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Disfunção Cognitiva/microbiologia , Modelos Animais de Doenças , Fezes/microbiologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Aprendizagem em Labirinto , Memória , Camundongos , Camundongos Transgênicos , Memória Espacial , Tibet , Iogurte/microbiologia
10.
High Alt Med Biol ; 20(2): 112-119, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30192653

RESUMO

Background/Aims: High-altitude polycythemia is defined by the increase of hematocrit and hemoglobin at high altitudes caused by production of excessive erythrocytes. Eryptosis is a process by which mature erythrocytes undergo self-destruction sharing several features with apoptosis. However, the eryptosis in high-altitude hypobaric hypoxia is unknown. Thus, the main purpose of this study was to investigate whether chronic hypoxia affected eryptosis and, if so, by what mechanisms. Methods: Biotin labeling technology was utilized to study the survival of red blood cells in chronic hypoxia. Flow cytometry was used to determine the volume of mature erythrocytes from forward scatter, phosphatidylserine scrambling from annexin-V-binding, intracellular Ca2+ from Fluo-3-AM, reactive oxygen species (ROS) abundance from ROS-probe, and ceramide and CD47 abundance utilizing specific antibodies. Results: The volume of mature erythrocytes was significantly changed, and the percentage of annexin-V-binding cells was significantly decreased under chronic hypobaric hypoxia. Erythrocyte survival was improved under chronic hypoxia, and chronic hypoxia resulted in a decrease in intracellular Ca2+in vivo and influenced eryptosis which was induced by the Ca2+-ionophore ionomycin (1 µM, 60 minutes) in vitro. Chronic hypoxia also resulted in an increase in CD47 and ceramide abundance, but it had no effect on ROS formation. Conclusions: Chronic hypobaric hypoxia can inhibit eryptosis by decreasing intracellular Ca2+ and increasing integrin-associated protein CD47.


Assuntos
Eriptose , Eritrócitos/citologia , Hipóxia/metabolismo , Animais , Antígeno CD47/metabolismo , Cálcio/metabolismo , Ionóforos de Cálcio , Sobrevivência Celular , Células Cultivadas , Ceramidas/metabolismo , Citometria de Fluxo , Ionomicina , Modelos Animais , Ratos Sprague-Dawley
11.
Appl Microbiol Biotechnol ; 102(5): 2143-2154, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29354854

RESUMO

Alveolar echinococcosis is a zoonotic disease caused by the infection of the larval stage Echinococcus multilocularis with worldwide distribution especially in the northwest China. It is important to develop a well-tolerated immunoprophylaxis against E. multilocularis for alveolar echinococcosis control. In this study, a prokaryotic expression system for recombinant immunogen LTB-EMY162 was established, and the immunological features, sensitized lymphocyte, IL-4/IFN-γ secreted, prophylactic effect, and therapeutic effect were also evaluated. Arctic Express (DE3) system, Ni2+-charged and molecular sieve chromatography were used to obtain a high-purity 29 kDa protein. The ELISA and lymphocyte proliferation assay showed that LTB-EMY162 induced high-titer specific IgG against EMY162 and E. multilocularis protoscoleces protein in BALB/c mice and promoted sensitized T lymphocyte cell proliferation, and LTB-EMY162 stimulated Th cell to secrete IL-4 and IFN-γ and induced a Th1/Th2 mixed type immunological response. We also found that LTB-EMY162 significantly inhibited the cysts formation by challenging with 1000 E. multilocularis protoscoleces. The growth of protoscoleces and cysts were also significantly decreased by treating with LTB-EMY162 in 1000 protoscoleces intraperitoneal injection therapeutic mice model. In conclusion, we have constructed a subunit vaccine LTB-EMY162 which has prevention and therapeutic effect against E. multilocularis infection.


Assuntos
Echinococcus multilocularis/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Animais , Anticorpos Anti-Helmínticos/imunologia , Antígenos de Helmintos/administração & dosagem , Antígenos de Helmintos/genética , Antígenos de Helmintos/imunologia , Echinococcus multilocularis/genética , Echinococcus multilocularis/crescimento & desenvolvimento , Feminino , Humanos , Interferon gama/imunologia , Interleucina-4/imunologia , Estágios do Ciclo de Vida , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...